Envíanos tu consulta
Términos y condiciones *
*Si no puedes asistir en directo te facilitaremos un enlace para verlo en diferido
logoImagina
Formación
Modalidades
Próximas Convocatorias
Temario
FAQ
Solicitar información
iconoCurso

Curso de Análisis y visualización de datos con Python

DISPONIBLE EN MODALIDAD:
aMedidaIcon
Aula Virtual Personalizada
arrowRightDark

Empieza en el mundo de la ciencia de datos a través del análisis de datos y la creación de visualizaciones con Python para la toma de decisiones a nivel profesional

iconClienticonClienticonClienticonClienticonClienticonClienticonClienticonClienticonClienticonClienticonClienticonClienticonClienticonClienticonClienticonClienticonClienticonClienticonClienticonClienticonClienticonClient

Formación en Análisis y visualización de datos con Python bonificable para empresas

A quién va dirigido nuestro curso de Análisis y visualización de datos con Python

Desarrolladores, con experiencia en Python, que quieran empezar en el mundo de la ciencia de datos a través del análisis de datos y la creación de visualizaciones para la toma de decisiones a nivel profesional

Objetivos de nuestro curso de Análisis y visualización de datos con Python

  • Aprender los fundamentos del análisis de datos
  • Aprender a utilizar las distintas soluciones que brindan las librerías de Python para el análisis y visualización de datos
  • Aprender a encontrar relaciones entre distintos orígenes de datos (Excel, csv, bases de datos, etc.)
  • Aprender a tratar los datos de manera profesionar y crear informes visuales que permitan sacar conclusiones

Qué vas a aprender en nuestro curso de Análisis y visualización de datos con Python

Empieza en el mundo de la ciencia de datos a través del análisis de datos y la creación de visualizaciones con Python para la toma de decisiones a nivel profesional

Requisitos de nuestro curso de Análisis y visualización de datos con Python

  • Tener experiencia desarrollando con Python, bases de datos y tener conocimientos fundamentales de ciencia de datos
  • Son necesarios permisos de instalación en el equipo en el que se realice la formación
  • Tener acceso (revisar configuraciones proxy en caso de tenerlas) a una cuenta Community de Azure Databricks
  • Disponer de una cuenta de Google con acceso a Google Colab donde poder realizar pruebas de modelos
  • Tener Python 3, Git, Docker Desktop y un IDE para desarrollar en Python instalado previamente (por ejemplo Pycharm) instalados previamente en el equipo

Temario del curso de Análisis y visualización de datos con Python

tema 1

Introducción al análisis de datos con Python

  • ¿Qué es el análisis de datos?
  • Importancia y aplicaciones del análisis de datos
  • Tareas en el análisis de datos
  • Tipos de datos: numéricos, categóricos, texto, fechas, etc.
  • Instalación de Python y configuración del entorno de trabajo
  • Configuración del IDE y plugins de interés
  • Creación de proyecto y primeros pasos
iconArrowDown
tema 2

Preparación de datos

  • Obtención y carga de datos desde diferentes fuentes (CSV, Excel, API, bases de datos, etc.)
  • Limpieza y transformación de datos
  • Manejo de valores faltantes y nulos
  • Eliminación de duplicados
  • Corrección de errores y valores atípicos
  • Normalización y estandarización de datos
  • Manipulación y filtrado de datos
  • Selección de columnas relevantes
  • Filtrado de filas según condiciones
  • Ordenamiento de datos
  • Aplicación de funciones y transformaciones a los datos
iconArrowDown
tema 3

Análisis exploratorio de datos

  • Estadísticas descriptivas
  • Medidas de tendencia central (media, mediana, moda)
  • Medidas de dispersión (varianza, desviación estándar)
  • Resumen estadístico (mínimo, máximo, percentiles)
  • Análisis univariable y multivariable
  • Histogramas y gráficos de distribución
  • Boxplots y diagramas de caja y bigotes
  • Matrices de correlación
  • Análisis de frecuencia y tablas de contingencia
  • Visualización de datos
  • Gráficos de barras y columnas
  • Gráficos de líneas y áreas
  • Gráficos de dispersión y correlación
  • Gráficos de torta y donut
  • Heatmaps y mapas de calor
iconArrowDown
tema 4

Procesamiento y transformación de datos

  • Agrupación y segmentación de datos
  • Agrupación por categorías o rangos
  • Segmentación temporal
  • Reducción de dimensionalidad
  • Análisis de componentes principales (PCA)
  • Análisis discriminante lineal (LDA)
  • Normalización y estandarización de datos
  • Escalamiento de variables
  • Normalización min-max
  • Discretización y binning de datos
  • Conversión de variables continuas a categóricas
  • Creación de intervalos o rangos de valores
  • Extracción de características y selección de variables
  • Selección de características relevantes
  • Extracción de características mediante técnicas como PCA o LDA
iconArrowDown
tema 5

Análisis de datos temporales y series de tiempo

  • Manipulación y transformación de fechas y horarios
  • Análisis de estacionalidad y tendencias en series de tiempo
  • Métodos de suavizado y pronóstico
  • Análisis de componentes de series de tiempo
  • Descomposición y detección de anomalías
iconArrowDown
tema 6

Modelado y predicción

  • Selección de modelos adecuados al tipo de problema
  • Entrenamiento y evaluación de modelos
  • Separación de conjuntos de entrenamiento y prueba
  • Métricas de evaluación (precisión, recall, F1-score, etc.)
  • Validación cruzada y ajuste de hiperparámetros
  • Grid Search y Random Search
  • Validación cruzada k-fold
  • Algoritmos de aprendizaje supervisado (regresión lineal, regresión logística, árboles de decisión, SVM, etc.)
  • Algoritmos de aprendizaje no supervisado (agrupamiento, detección de anomalías, reducción de dimensionalidad)
  • Algoritmos de aprendizaje profundo (redes neuronales, CNN, RNN, etc.)
  • Interpretación y análisis de los resultados del modelo
iconArrowDown
tema 7

Visualización avanzada de datos

  • Visualización interactiva con librerías como Plotly, Bokeh y Seaborn
  • Gráficos geoespaciales y mapas
  • Visualización de redes y grafos
  • Dashboards y paneles de control
iconArrowDown
tema 8

Análisis y visualización de datos en la nube

  • Introducción a soluciones en la nube para análisis de datos (Google Cloud Platform, Microsoft Azure, Amazon Web Services)
  • Uso de DataBricks para análisis y procesamiento de datos a gran escala
  • Trabajando con Google Colab
  • Despliegue de aplicaciones Python en la nube utilizando servicios como Flask, Heroku, AWS Lambda, etc.
  • Integración de bases de datos en la nube (Firebase, MongoDB Atlas, PostgreSQL en la nube)
iconArrowDown
tema 9

Administración de proyectos de análisis de datos

  • Organización y estructura de proyectos de análisis de datos
  • Uso de control de versiones con Git y GitHub
  • Creación y mantenimiento de entornos virtuales con virtualenv o conda
  • Documentación de proyectos y buenas prácticas de programación
  • Colaboración y trabajo en equipo en proyectos de análisis de datos
iconArrowDown
tema 10

Creación de soluciones mantenibles, extensibles y seguras

  • Diseño de arquitecturas escalables para proyectos de análisis de datos
  • Modularidad y reutilización de código
  • Automatización de tareas y procesos
  • Gestión de dependencias y actualización de librerías
  • Pruebas unitarias y de integración en proyectos de análisis de datos
iconArrowDown
tema 11

Seguridad y privacidad en el análisis de datos

  • Protección de datos sensibles y cumplimiento de regulaciones
  • Anonimización y pseudonimización de datos
  • Seguridad en la transferencia y almacenamiento de datos
  • Identificación y mitigación de riesgos de seguridad en proyectos de análisis de datos
  • Protección contra ataques y amenazas comunes
iconArrowDown
tema 12

Visualización avanzada de resultados

  • Creación de gráficos interactivos con Dash y Bokeh
  • Creación de informes y presentaciones con Jupyter Notebook y R Markdown
  • Integración de visualizaciones en aplicaciones web y dashboards interactivos
  • Visualización de resultados en entornos de realidad virtual y aumentada
  • Mejores prácticas de diseño y comunicación visual en la presentación de resultados
iconArrowDown
tema 13

Ética en el análisis y visualización de datos

  • Consideraciones éticas en la recopilación y uso de datos
  • Sesgos y equidad en el análisis de datos
  • Responsabilidad y transparencia en la toma de decisiones basadas en datos
  • Cumplimiento de regulaciones y políticas de privacidad
  • Impacto social y ético del análisis de datos
iconArrowDown
tema 14

Resolución de problemas y solución de errores en el análisis de datos

  • Identificación y depuración de errores en el análisis de datos
  • Uso de herramientas de depuración y visualización de datos
  • - Estrategias de resolución de problemas en el análisis de datos
  • Investigación y búsqueda de soluciones a problemas específicos
  • Manejo de errores comunes en la manipulación y análisis de datos
  • Optimización del rendimiento y eficiencia en el análisis de datos
  • Gestión de excepciones y manejo de errores durante la ejecución del código
iconArrowDown
tema 15

Aplicaciones prácticas del análisis y visualización de datos

  • Análisis de datos financieros y económicos
  • Análisis de datos de marketing y comportamiento del consumidor
  • Análisis de datos en el sector de la salud y medicina
  • Análisis de datos en el ámbito de la energía y medio ambiente
  • Análisis de datos en redes sociales y análisis de sentimientos
iconArrowDown
tema 16

Proyecto final: Desarrollo de un sistema de análisis y visualización de datos

  • Definición de requisitos y alcance del proyecto
  • Diseño de la arquitectura del sistema
  • Implementación del sistema utilizando las técnicas y herramientas aprendidas
  • Pruebas y validación del sistema
  • Documentación y presentación del proyecto
iconArrowDown

Preguntas Frecuentes de Análisis y visualización de datos con Python

Beneficios del curso Análisis y Visualización de Datos con Python

accordionIcon
Este curso te permitirá comprender y manipular grandes conjuntos de datos con Python, desarrollar habilidades para generar análisis detallados y crear visualizaciones efectivas que te ayudarán a tomar decisiones informadas en tu empresa. También mejorarás la eficiencia de tus procesos y la capacidad analítica de tu equipo.

¿El curso Análisis y Visualización de Datos con Python es 100% bonificado por FUNDAE?

accordionIcon
Sí, el curso es 100% bonificable a través de FUNDAE, lo que te permite aprovechar el crédito disponible para la formación de tus empleados, sin que suponga un coste adicional para tu empresa.

¿Cómo se imparten las clases del curso Análisis y Visualización de Datos con Python?

accordionIcon
Las clases se imparten de manera online, lo que ofrece flexibilidad para que tus empleados puedan acceder al contenido en el momento que mejor se ajuste a sus horarios laborales. Además, contamos con un equipo de expertos que proporcionan soporte continuo y material actualizado.

Habilidades a desarrollar con el curso Análisis y Visualización de Datos con Python

accordionIcon
Tus empleados desarrollarán habilidades en la manipulación de datos, análisis estadístico, visualización de información y programación en Python. Estas competencias son cruciales para convertir datos en información valiosa y mejorar la toma de decisiones dentro de la empresa.

¿Cómo me inscribo en el curso Análisis y Visualización de Datos con Python?

accordionIcon
Para inscribirte, simplemente ponte en contacto con nuestro equipo de soporte a través de los canales proporcionados en nuestra web. Te guiaremos durante todo el proceso de inscripción y te proporcionaremos toda la información necesaria para aprovechar al máximo el curso.